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Information processing in nonlinear neural networks with a finite number q of 
stored patterns is studied, Each network is characterized completely by its 
synaptic kernel Q. At low temperatures, the nonlinearity typically results in 
2 ~ - 2 - q  metastable, pure states in addition to the q retrieval states that are 
associated with the q stored patterns. These spurious states start appearing at a 
temperature 7"q, which depends on q. We give sufficient conditions to guarantee 
that the retrieval states bifurcate first at a critical temperature T~ and that 
7"q/Tc ~ 0 as q --* oo. Hence, there is a large temperature range where only the 
retrieval states and certain symmetric mixtures thereof exist. The latter are 
unstable, as they appear at To. For clipped synapses, the bifurcation and 
stability structure is analyzed in detail and shown to approach that of the 
(linear) Hopfield model as q ~ oo. We also investigate memories that forget and 
indicate how forgetfulness can be explained in terms of the eigenvalue spectrum 
of the synaptic kernel Q. 

KEY WORDS: Nonlinear neural networks; bifurcation and stability; infor- 
mation processing; logical operations; forgetfulness. 

1. I N T R O D U C T I O N  

T h e  e q u i l i b r i u m  s ta t i s t ica l  m e c h a n i c s  o f  a n o n l i n e a r  n e u r a l  n e t w o r k  wi th  

f ini tely m a n y ,  say q, s t o r ed  pa t t e rn s  a l lows  an  exac t  so lu t ion .  (1'2) As was  

s h o w n  in a p r e v i o u s  paper ,  (t) to be refer red  to  as G T ,  the  free ene rgy  m a y  

be  o b t a i n e d  by  m a x i m i z i n g  a f unc t i ona l  wi th  respec t  to  all so lu t ions  o f  a 

f i xed -po in t  e q u a t i o n .  T h e  s tab le  a n d  m e t a s t a b l e  s ta tes  cons t i t u t e  free 
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energy valleys in phase space and therefore are basins of attraction for any 
dynamics of Monte Carlo type. They are fully determined by a set of order 
parameters m(x) with x e cgq = { _  1, 1 }q. The m(x) solve the fixed-point 
equation associated with the model under consideration. 

The neurons are modeled as Ising spins S(i)= _+ 1 and the data (the 
"patterns") are stored in the synaptic efficacies (the "coupling constants"), 
which we will denote here by J,j. Throughout what follows we assume 
J•= Jji and require locality via some generalized Hebbian rule so that, 
given q patterns, Jij may be assumed to be determined by the local infor- 
mation {~ and {j available to neurons i and j only, where {~= {~i~, 
l~<ct~<q}. So we may write J~j=Q({z;{j) for some synaptic kernel Q, 
which is symmetric by assumption. That is, Q(x; y) = Q(y; x) for all x and 
y in cgq or, more generally, Nq. Under a rather weak invariance condition 
[-GT (3.1)], which is satisfied by nearly all neural network models, a com- 
plete spectral theory for Q can be given and hence (a) all the states that 
bifurcate from the high-temperature phase can be determined. What these 
states look like is one of the main subjects of the present work. 

Given the above conceptual structure, we will study in this paper how 
information is processed. We know how the data are stored, through the 
synaptic kernel Q, and the question is how they can be retrieved. In the 
present context, retrieval means downhill motion in a free energy valley or 
ergodic component, and thus a nontrivial set of order parameters {m(x), 
x e cgq} which should have bifurcated from zero, i.e., from the high-tem- 
perature phase m-- 0. 

In Section 2 the solutions of the fixed-point equation are analyzed in 
detail. The roles of symmetry and parity are clarified, the bifurcation from 
m - 0 is related to the spectrum of Q, the stability of bifurcating solutions 
is studied, and it is indicated under what condition the stability matrix 
attains a much simpler, block-diagonal structure. 

The eigenvectors Vp(X) of Q, where (cf. GT, Section 3) the label p 
denotes one of the 2 q subsets of {1 ..... q}, can be associated with states of 
the neural network model that has Q as synaptic kernel. As will be shown 
in Section 3, these states, which are called pure states, are stable or 
metastable at sufficiently low temperatures if and only if 2 o, the eigenvalue 
belonging to v o, is positive. The retrieval states constitute a special but very 
important example. They are characterized uniquely by the fact that IPl, 
the size of the set p, equals one. There are q retrieval states corresponding 
to q stored patterns. For the Hopfield model, which is linear, these are the 
only pure states, but for a typical nonlinear neural network there are about 
2 q- 2 pure states belonging to positive eigenvalues. At low temperatures, all 
these states are stable or metastable and hence constitute basins of attrac- 
tion. Most of them are not wanted, however. 
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For a large class of models (of the inner-product type) it turns out 
that the retrieval states bifurcate first and that they are the only ones that 
are stable just below To; see Section 3, Eqs. (3.5) and (3.6). A natural 
question is, however, whether there are other states that bifurcate from 
zero at T c. This is indeed the case. As shown in Section 4, there are 2 q sym- 
metric states that bifurcate from m- -0  at To. It is proven that, except for 
the retrieval states, they are all unstable when they first appear. We present 
a general method to analze this type of bifurcation problem, which occurs 
at a q-fold degenerate eigenvalue and is to be analyzed in a 2q-dimensional 
space. (For a bifurcation at a lower temperature, the degeneracy is even 
higher.) 

Specializing to clipped synapses, we show in Section 5 that, as q 
becomes large, the bifurcation and stability structure in the temperature 
range Tq < T< T c reduces to that of  the linear Hopfi'eld model with the same 
number of patterns. Here ~q = 2 q~, where ~ is the second largest eigen- 
value of the synaptic kernel. For the Hopfield model, ~ vanishes, but for a 
general nonlinear neural network model ~[ > 0. Below ~q we enter the tem- 
perature range where the nonlinearity becomes important. Fortunately, 
7"q/Tc~O as q ~  oo [see GT (3.36) and (4.18)]. 

The spectral theory developed previously ~1) also applies to forgetful 
memories. In Section 6 we briefly sketch how the forgetfulness may be 
explained. 

Finally, in Section 7, the results are discussed and it is indicated how 
the disadvantages of the nonlinearity may be eliminated while keeping the 
benefits. 

2. G E N E R A L  P R O P E R T I E S  O F  T H E  F I X E D - P O I N T  E Q U A T I O N  

For unbiased binary input data the equilibrium statistical mechanics 
of a neural network model with synaptic kernel Q is governed by real 
solutions to the fixed-point equation 

m(x) = tanh[-fl2 q(Qm)(x)], x ~ { - 1, 1 }q (2.1) 

which is GT (2.22). Now Q operates as a 2q• 2 q matrix Q with elements 
Q(x; y). Below we present, for easy reference and by way of preparation for 
the sections to follow, a number of general properties of the (real) solutions 
to (2.1). Q will only be subject to the restrictions of being real, symmetric, 
and satisfying the invariance condition GT (3.1). 
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2 .1 .  C o v a r i a n c e  

Let m be a solution of the fixed-point equation (2.1) and g an 
arbitrary element of the group of inversions (r introduced in GT, Sec- 
tion 3.1. Then the 2q-vector gm with components 

(gm)(x) = (m)(gx) (2.2) 

also satisfies (2.1). To wit, let 
manner specified by (2.2). Then 

(gm)(x) = tanh 

= tanh 

= tanh 

g operate on both sides of (2.1) in the 
one obtains 

[/32 q ~ Q(gx; y)m(y)] 

[//2 q~ Q(x; gy)m(y)] 

[/32 q~ Q(x;y)m(gy)] 

= tanh E/32-q(Q(gm))(x) ] (2.3) 

Here, we have used the invariance property GT (3.2) in the second, and the 
inversion property g - l =  g in the third step. By a similar argument, the 
covariance (2.3) is seen to hold for our general fixed-point equation GT 
(2.20), 

m(x)=tanh [~ f dl~(y) Q(x; y)m(y)] (2.4) 

provided the measure ~t is invariant under Nq. 
In the same manner, covariance as in (2.3) follows for the set of 

solutions of (2.1) or (2.4) with respect to any group ~r of transformations 
that map the range of x onto itself and leave both Q and g invariant, such 
as the group of rotations in the Gaussian case treated in GT, Section 4. 

Due to the covariance property (2.3), the solutions of (2.1), and more 
generally of (2.4), always come in maximal sets of solutions that are trans- 
formed into each other by suitable elements of ~r These sets form 
equivalence classes under ~r Each equivalence class consists of solutions 
invariant under one of the subgroups of ~r For the purposes of the bifur- 
cation and stability analysis in this and the subsequent sections, it will 
generally suffice to restrict ourselves to one element of each equivalence 
class, and we shall as a rule make no special mention of solutions 
equivalent to the ones considered. 
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2.2. Parity 

In this subsection we will use without further ado the properties GT 
(3.5)-(3.10) of the eigenvectors v o and the eigenvalues 2p of the synaptic 
kernel Q(x; y). 

Since the eigenvectors vp form a complete set, any solution m of (2.1) 
can be expanded in terms of them, 

m(x) = ~ %vp(x) (2.5) 
p 

Inserting (2.5) into (2.1) and using the orthogonality of the vp, one obtains 
for the coefficients % the system of equations 

where P and ~r range through all the subsets of {1 ..... q}. The system (2.6) is 
equivalent to (2.1). 

If, now, the synaptic kernel Q has definite parity in the sense of GT 
(3.10), then we have 

Qodd:  % = 0  whenever IPl iseven 
(2.7) 

Q even: ~p = 0 whenever [P] is odd 

This is seen immediately from (2.6), since Vp(X) is even (odd) under 
x ~ - x  if the cardinality Ipl is even (odd), and 2p vanishes for all vp that 
have a parity opposite to that of Q. 

In practical work, Q always has a definite parity. For instance, in the 
case of clipped synapses (Section 5) and memories that forget (Section 6), 
Q is odd. 

2.3. Bifurcation 

Obviously, the trivial solution m ( x ) = 0  satisfies (2.1) for all /~. It is 
the only (real) solution for temperatures above or equal to the critical 
temperature (ks = 1) 

Tc = 2-q,~max (2.8) 

where J~rnax denotes the largest positive eigenvalue of the synaptic kernel Q. 
To see this, we consider an arbitrary solution m el 0 of (2.1) and note that 
its norm squared satisfies the inequality 
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(m, m)------~ Im(x)l 2 
X 

= ~ Im(x)l Itanh[(~/2q)(Qm)(x)]l 
x 

< f12 -q ~ Im(x)l I(Qm)(x)l (2.9) 
X 

In obtaining the strict inequality in (2.9) we have used the fact that 
itanh(u)l < ]ul for all u e ~ except u = 0, and that the argument of the tanh 
in (2.9) must be nonzero for some x if m is nontrivial. Now, for each non- 
zero term in the sums in (2.9), the quantities re(x), tanh[~2-q(Qm)(x)], 
and (Qm)(x) all have the same sign. [This is by virtue of (2.1) and the fact 
that the hyperbolic tangent is odd.] Hence we conclude 

(m, m) </32-q ~ m(x)(Qm)(x) 
X 

= fl2-q(m, Qm) 

~</32--q2max(m, m) (2.10) 

This implies /3 > 2q/•max when m ~ 0. Thus, for all temperatures down to 
and including the critical temperature (2.8), the zero solution is the only 
(real) solution of (2.1). 

Nontrivial solutions that bifurcate from zero can do so only at tem- 
peratures where 2qT equals one of the positive eigenvalues of Q. This is 
most easily understood by writing (2.1) as 

F~(m,/3)=O, x ~ { - 1 , 1 }  q (2.11) 

with the functions Fx defined by 

F~(m, ~) := m(x) - tanh[/32-q(Qm)(x)] (2.12) 

By the implicit function theorem (3)'4 there exist, for every pair (m <~ 
that satisfy (2.11), a neighborhood B of/3(o) and a neighborhood J r /o f  m (~ 
such that, for every /3sB, Eq. (2.11) has a unique solution m(/3) in Jg, 
provided that the matrix of partial derivatives D with elements 

Ox,y := C3Fx/~m(y) (2.13) 

has nonzero determinant at (m <~ So, as long as det(D) does not 
vanish, m(/3) is locally unique, and therefore a bifurcation is not possible. 
According to (2.12), the matrix elements of D are 

Dx,y = 6x.y - fl2-qQ(x; y ) [ l  - tanh2(fl2-q(Qm)(x))] (2.14) 

4 See Ref. 4, p. 35, and Chapter IV on bifurcation at a multiple eigenvalue (pp. 70-85). 
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so that along the trivial solution 

det O ] (r, = 0;~) = det(~ -/~2 qQ)= I-I (1-fl2-q)~p) 
p _~ { 1,.. . ,q} 

It follows that the only temperatures where solutions of (2.1) can bifurcate 
from zero are given by the condition (kB = 1) 

To=Z-q  J, p (2.15) 

where 2p ranges through the positive eigenvalues of the synaptic kernel Q. 
Conversely, nontrivial solutions do indeed bifurcate from zero at every 

temperature Tp. To see this, one need only try in (2.1) the Ansatz 

m(x) =%vo(x) ,  x e  { - 1 ,  1}q (2.16) 

where vp is an eigenvector of Q with positive eigenvalue 2p and % a 
corresponding amplitude, which is to be determined. Upon inserting (2.16) 
into (2.1), one finds, due to the eigenvector property of v o that ~p has to 
satisfy 

%vp(x)=tanh[(/~2 q2p)%vp(x)], x e  { - 1 ,  1} q (2.17) 

Since Vp(X) only assumes the values _+ 1, Eq. (2.17) reduces to the single 
equation 

% = tanh [(/32-q2p)%] (2.18) 

For each positive eigenvalue 2p of Q, Eq. (2.18) has a nontrivial positive 
solution for all/~'s larger than a critical/~p determined by the condition 

flp2-q),p = 1 (2.19) 

i.e., for all T below the bifurcation temperature Tp given by (2.15). 
The nontrivial solutions of type (2.16) are unique in the sense that 

there is--up to the choice of the sign of % ~ x a c t l y  one of these for each 
subset p of { 1 ..... q } with 2p > 0. These solutions of the fixed-point equation 
will be referred to as the pure states. Their physical interpretation, their 
stability behavior, and their relevance for the retrieval of stored infor- 
mation are discussed in Section 3. 

Let us finally remark that the first inequality (2.10) contains further 
valuable information concerning both the global structure of the nontrivial 
solutions of (4.1) and their local behavior near bifurcation points. This 
information can be extracted by inserting, into both sides of (2.10), the 
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eigenvector expansion (2.5). Using the orthogonality of the vp, one obtains 
from (2.10) the inequality 

(/~2 qt~p-- 1 ) ~ > 0  (2.20) 
P 

for any nontrivial solution of the fixed-point equation (2.1). The con- 
clusions to be drawn from (2.20) are most conveniently formulated by 
extending the definition Tp = 2-q,J~p of the bifurcation temperatures so as to 
be valid for 2p ~< 0 also. In so doing we can rewrite (2.20) in the form 

Tp - T 2 
Z ~ p > 0  (2.21) 
P 

This then implies that any nontrivial (real) solution to (2.1) contains at 
least one ~pr with p such that Tp> T, since otherwise (2.21) would be 
violated. As a special case, we recover our earlier result that for T>~ T C = 
maxp Tp the only real solution to the fixed-point equations is the trivial one. 

2.4.  S t a b i l i t y  

Ergodic components are labeled by solutions re(x) of the fixed-point 
equation (2.1). As was shown in GT, Section2, their thermodynamic 
stability is determined by a 2q• 2 q matrix, the stability matrix 5e, whose 
elements are given by GT (2.18), 

5g~,y=/~2-qQ(x;y)- [1 --mZ(x)] 16x,y (2.22) 

Here we have used the fact that pv = 2 q and m r ~ m(x) for x in (~Tq = 

{ - 1, 1 }q. A phase with order parameters m(x) is stable if 6 e has negative 
eigenvalues only. 

We now perform a change of basis, taking the eigenvectors vp of Q as 
n e w  basis vectors. Then Q becomes a diagonal matrix and 5 e reappears in 
the form 

vo(x)v~,(x) 
5~'=/~(2 q'~'~)~'~'-2-q~ x l ~ m - - ~  (2.23) 

The indices a and a' run through the 2 q subsets of {1 ..... q}. For future 
work it is convenient to put 

2 q~o- = A~ (2.24) 

Before proceeding, we present two simple examples of (2.23). 
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First, for the trivial solution m ( x ) - 0 ,  5 e is a diagonal matrix with 
elements 

5P~, = {/~A~ - 1 } 6~, (2.25) 

Second, the stability of a pure state corresponding to m ( x ) =  apvo(x ) 
where ap satisfies (2.18) is also determined by a diagonal matrix, this time 
of the form 

~g~ = {flAo-(1-a~) -1 } 6c~,r, (2.26) 

In both cases stability leads to the simple requirement that 5e~ be negative 
for all a. 

Suppose now that R is a subset of {1,..., q} with cardinality ]RI > 1 
and let 

m ( x ) = m ( m ( x ) =  ~, apVp(x) (2.27) 
,o_~R 

be a solution to (2.1). This case is a generalization of the previous, second, 
example, since here p may range through several subsets of R. We want to 
prove the following: 

The stability matrix corresponding to (2.27) is block-diagonal with 
blocks of maximal size 2 IRI x 2 IRI. If the synaptic kernel has definite (odd or 
even) parity, as in GT  (3.10), each of the blocks is again block-diagonal 
and tile subblocks have maximal dimension 2 IRr - 1 x 2 IRI- 1 

For  the proof, we start by noting that, given R, every set cr ___ { 1 ..... q } 
can be decomposed into a part in R and a remainder in the complement 
of R, 

a = ~ ,  with c~_~R, r m R = ~  (2.28) 

so that the stability matrix (2.23) can be rewritten 

v~(x) v~,(x) v~(x) v~,(x) 
=flA~6~ '6~ ' -2-q~  - 1 - - - ~ ~  (2.29) 

Here we have used GT (3.5) so as to factorize the v,(x) into v~(x)v~(x). 
We note that e and c~' may occur in m(m(x), but r and r '  do not. Suppose 
r # r'. Then there is at least one single index t, which is either in z or in z' 
but not in both. Take an arbitrary x and flip the component t, i.e., 
x, ~ - x , .  In this way the x's can be paired, the terms of the sum in (2.29) 
cancel pairwise, 

v~(x) v~,(x) q 
~-~,~,,z, = A~z ~cc -- 2 - q Z 1 ~ ~--~(R)-S~] 2J ~r~, (2.30) 

x 

and the block-diagonal nature of 5 e has been established. 
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Furthermore, since m(m(x) is supposed to be a solution to the fixed- 
point equation and the synaptic kernel Q has definite parity, we know from 
Section 2.2 that m(R)(X) is mapped onto +m(R)(x) through the inversion 
x--* - x ,  so that [mR(x)] 2 is invariant. Hence the sum in (2.30) is nonzero 
only if ]el and [e'L are either both event or both odd. This proves the 
second half of the assertion. 

3. P U R E  S T A T E S  

The pure states epvp(x), p ___ { 1 ..... q }, have already been introduced in 
the previous section. For neural network models whose synaptic kernel 
Q(x;y) has the invariance property GT (3.1), they are the simplest non- 
trivial solutions of the transcendental fixed-point equations (2.1). Here we 
study the physical properties of these states and discuss their relevance to 
the retrieval of the information embedded in the network. 

Given a pure state envp(x), the value of the amplitude a n is determined 
by 

a n = t a n h ( f l A p e n )  (3.1) 

[cf. Eq. (2.17)]. As in Eq. (2.24), we have put A n = 2-q2 n. According to the 
bifurcation analysis of Section 2.3, nontrivial solutions of (3.1) only exist 
for )~ > 0 and in the temperature range 

T <  T n = A n (3.2) 

By virtue of the observation following Eq. (2.26), the pure state ctovn(x  ) is 
stable when 

/ ~ a ~ - ( 1 - ~ )  l < 0  forall a___{1,...,q} (3.3) 

Since the first term on the left-hand side is linear in/~ and the second term 
grows exponentially with /~, the left-hand side of (3.3) is negative and 
stability of envn(x ) is established at sufficiently low temperatures. The onset 
of stability occurs when 

/~Am,x = (1 - e 2 )  -1 (3.4) 

where Amax = 2 q2max and )'max is the largest (positive) eigenvalue of Q. 
This equation has to be solved together with the transcendental equation 
(3.1), leading to a temperature T* below which the pure state epvo(x ) is 
stable. T* should not be confused with the temperature T O where the pure 
state corn(x) bifurcates from m(x)=0 .  

Only in the special case where 2 n = '~max and therefore T n = Tc does 
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one find that the two temperatures Tp and T* coincide. This is easily seen 
by expanding (3.1) in powers of tp = (Tp - T)/Tp. For 0 < tp ~ 1 one gets 

%_2 _ 3tp + G(t~) (3.5) 

while the stability criterion (3.3) requires 

Tc 
(1 + tp)-~p - (1 + 3tp) + (9(t~) < 0 (3.6) 

If 2p=2max or, equivalently, To= To., then (3.6) is true for all tp with 
0 < tp ~ 1. On the other hand, if 0 < 2p < 2ma x and therefore Tc/T o > 1, then 
(3.6) is violated for small tp, so that the pure states belonging to 2p with 
0 < •p < )~max are indeed unstable when they first appear. 

To interpret the pure states in physical terms, we recall that m(x) 
represents a local magnetization on the sublattice 

I ( x ) =  {i: ~ i = x }  (3.7) 

[cf. GT (2.11)]. Thus, for the pure state ap%(x) we have 

re (x)=  ( S i > = %  I ]  x p = %  [I  ~iu; i r  (3.8) 
pep p e p  

Here (.> denotes a thermal average with respect to the ergodic component 
associated with the pure state under consideration. 

Performing a gauge (Mattis) transformation defined by 

Si--' S; = I-I ~ips~ (3.9) 
p e p  

one finds that the sublattice magnetizations of the transformed pure states 
are given by 

m ' (x )=  (S;>  = 17] xp<Si> 
p e p  

= % ,  i r  (3.10) 

This reveals that the transformed pure state is ferromagnetic and 
homogeneous. Since the transformation (3.9) leaves the partition function 
invariant, pure states are "Mattis states." 

It follows from (3.8) that for the pure states %vp(x) associated with 
singletons, i.e., subsets p of {1,...,q} with cardinality [ p f = l ,  the local 
magnetization is 

<&> = ~p~,p (3.11) 
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Each of these states is correlated with one of the q patterns that have been 
embedded in the system. Adopting the convention of Amit et al. (~) we refer 
to these states as retrieval states. Their retrieval quality is determined by % 
and thus by (2.18). The nearer % is to one, the better is the retrieval 
quality. As T ~  0, % approaches one at an exponential rate. 

The pure states corresponding to eigenvectors vp of Q with [Pl > 1 are 
not correlated with single patterns. Instead, according to (3.8), they are 
constructed out of products of several patterns embedded in the network. 
These states are an exclusive property o f  nonlinear models, since, because of 
GT (3.13), they are absent in linear neural networks of the Hopfield 
type.(6 8) 

The states with [Pl > 1 do not improve the retrieval of the stored 
patterns. Quite to the contrary, once they have become stable at low 
temperatures, they do form basins of attraction for the dynamics of the 
network. At first glance they therefore seem to spoil the usefulness of non- 
linear models. Fortunately, as q becomes large, it frequently happens that 
the temperatures Tp where these unwanted states appear are shifted 
arbitrarily close to zero. For instance, the model with clipped synapses 
gives 

q-2 for q = 4 k  o r q = 4 k + l  
Tp/Tc  ~- '~p/~max (3(2 (3.12) 

q 1 for q = 4 k + 2  o r q = 4 k + 3  

for the highest temperature T o where an unwanted pure state can bifurcate 
from zero. Here we have ignored the case I P[ = q  = 4k + 1 where a state 
correlated with the product of all patterns bifurcates from zero at To. At 
T =  0, this state is characterized by 

q 
Si=  ~ ~i~ (3.13) 

~=1 

It strongly deviates from the original patterns. 
On the other hand, one can also regard the states %vp(x) with Ipl > 1 

as virtues of a nonlinear model because they can be associated with non- 
trivial computational capabilities. (9) Consider, for instance, a network with 
synaptic kernel of the form 

Q({~; {j) = A o + A~ ~ r + A2 ~ Vp(~i) Vp(~j) 
, Ipl =2 (3.14) 

A o = A 2 > 0 ,  A I > 0  

For Q given by (3.14), the fixed-point equation (2.1) allows the following 
types of solution involving at most two patterns: 
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(i) re(x) = aoao with ~o = tanh(flAoc%) 

(ii) m(x)=auaux~ with ~,=tanh(flAlC~u) 

(iii) m(x)=~,vavvx~x v with ~ , v = t a n h ( f l A 2 ~ )  
(3.15) 

(iv) m ( x ) = a o a o + a l ( a u x  "+a~xv)-a2aoa"a~xux~ 

with a o = ~ 2 = a ,  a=�89 

~m=b, b=l  tanh(2flAlb) 

Here the o o, au, a~, and a,~ are + 1 and can be chosen freely. Thus, for 
each pair (p, v) of patterns, Eq. (3.15) stands for 16 different solutions to 
(2.1). At sufficiently low temperatures these solutions represent truly 
metastable states of the system and together they implement at T =  0 the 
complete set of 16 logical operations that can be performed on the pair 
(kt, v). See Table I. 

Table I. Logical Operations on the Pair (IJ, v), Represented As 
Zero-Temperature Solutions of (3.15) ~ 

(iv) 
(ii) a 0 a~ a~ 

(i) (iii) 

x~ xv a o = +  a ~ = +  a v = +  a j ~ v = +  + + +  + + -  + - +  - + +  

+ + + + + + + + + + 
+ - + + - _ + + - _ 

- + + - + - + - + - 

+ - _ + - + + - 

V ~ A 

" P lus  s t a n d s  for  + 1 o r  T R U E ,  m i n u s  for  - 1  o r  F A L S E .  The  o p e r a t i o n s  a re  selected b y  

speci fy ing the  type  o f  so lu t ion  a n d  the  va lues  of  a0 ,  au ,  av, a n d  auv as a p p r o p r i a t e .  The  

b o t t o m  r o w  presen t s  c o n v e n t i o n a l  s y m b o l s  for  some  of  the  ope ra t i ons .  

4. S Y M M E T R I C  STATES 

In this section we give a complete characterization of all solutions of 
the fixed-point equations that bifurcate from m = 0 at the critical tem- 
perature T c = 2 q ) . m a x "  For nondegenerate eigenvalue ). . . . .  the analysis is 
simple. Only the pure state %vp with ).p = ~ r n a x  branches off from zero. 
However, a much richer structure appears when )'max is degenerate, as, for 
instance, in the case of clipped synapses and the Hopfield model. In fact, in 
the context of information retrieval in neural network models it is 
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imperative that the stored patterns bifurcate first. For the sake of 
definiteness we therefore restrict our attention to the case where J'max is q- 
fold degenerate and 2 o = )~max for all p with Ipl = 1, i.e., for all the retrieval 
states. For this type of model we show that any solution of (2.1) that bifur- 
cates from m = 0 at Tc can (up to equivalence) be written as 

m(x )=  ~ coop(x) (4.1) 
p ~ _ J V "  

where p ranges through all the subsets of A/" _ { 1 ..... q } and 

= ~0~lpl, p ___ X (4.2) 
% (0, otherwise 

The corresponding states are called symmetric states because the right-hand 
side of (4.1) is invariant under all permutations of the lements of X .  The 
symmetric states of Amit etal. (~~ constitute a special case of what is 
considered here. 

In passing we note that it is implicitly assumed throughout what 
follows that the synaptic kernel Q is odd [GT (3.10)] so that % has to 
vanish for all p with even cardinality I P[. 

Our analysis of the bifurcation phenomena at the multiple eigenvalue 
2max takes advantage of the Liapunov-Schmidt procedure, a description of 
which can be found, e.g., in Sattinger. ~4) For a first view, the reader may 
also consult Golubitsky and Schaeffer (Ref. 11, Chapter I, w for the 
method itself, and w for stability). 

We begin by dividing the set of 2 q fixed-point equations 

o, 0  43, 
x 

into two parts, one related to the retrieval amplitudes % with IPl = 1 (to be 
denoted by a.), and the other to the remaining product-state amplitudes % 
with [pl >~ 3 (to be denoted by b~), so that (4.3) reads 

G.(/?, a, b) = a~ - 2 q ~ x .  tanh [flA 1 2 a.,x., 
X b r 

+ fl ~, A,,b~,v~,(x)] = 0 (4.4a) 
if, 21 

G~(/~, a, b) = b~ - 2 -q ~ v,(x) tanh [flA 1 ~ au, x u, 
X b /1' 

A~,b,,v,,(x)l = 0 (4.4b) + 
if, l 
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We look for solutions of (4.4) that become small as T ~  Tc=A 1 from 
below (or equivalently /~Ax- t  ~ 0  from above). The Liapunov-Schmidt 
procedure (a) consists of three main steps. 

First, consider (4.4b) and define D to be the matrix with elements 

c~G~(/~, a, b) a= = 6~,(1 - /~A,)  
Doo,-  0bo, b=O 

Near f l=  tic., the matrix D is nonsingular, since flcA,# 1 for all a with 
lal # 1. By the implicit function theorem, (4.4b) defines a function b(fl, a) 
which is locally unique and analytic in fl and a in a neighborhood of 
flA 1 - 1 = 0 and a = 0. Moreover, by using the fact that Gp(fi, a = 0) = 0 for 
all fl and that Gp(flc, a) is not identically zero in a neighborhood of a = 0, 
general theory (Ref. 4, Lemma 4.1) tells us that the zeroth- and first-order 
terms in a series expansion of b(fl, a) in powers of f lax-  1 and a vanish. 
Therefore, the expansion of b(fl, a) can be written 

b(/~, a ) =  ~ Z b/j(a)(~A1- 1) j (4.5) 
k = 2  i + j = k  

where b 0 is homogeneous of degree i, i.e., bu(za ) = i z b0.(a) .  
Second, inserting the functional relation b=b(/ / ,  a) into (4.2a), one 

obtains 

a):= a, b(fl, a)) 

2 -q ~ x .  tanh [/~A1 ~a.,x~, + ~ ~ A~b.(~, a)v~(x)]  ~ a ~ -  

X 1 /t '  O" 1 

(4.6) 

The equations 

F~(fl, a) = 0, 1 ~</t ~< q (4.7) 

constitute a set of q fixed-point equations for the retrieval amplitudes 
alone. In this way, one has reduced the 2q-dimensional problem (4.3) to a 
q-dimensional one, namely (4.7). 

The third step consists in solving (4.7) to lowest order in flA~ - 1 by 
means of a so-called reduced bifurcation equation. (4) To obtain this 
equation, one expands (4.6) in a power series in flAx - 1 and a, which can 
be written 

F~(/~, a ) =  ~ ~ F~0(a)(/~A1- 1) j (4.8) 
k = l  i + j = k  
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where F,o is homogeneous of degree i. In the present case, first expanding 
the hyperbolic tangent in (4.6), one obtains 

g(fA1) ~ amal,2am a~,,momom Fu( fl, a ) =  -a , ( f lA~ - 1)..1_1 3 

p l,U2,u3 

+if(fAt)2 a.la. A0-b 6.,.,o. oo 
PlP20-  

/Zl0-1o- 2 

+�89 Z A~,b~)A~2bo2Ao3b~36~.~,o~2o~3 + ' (4.9) 
O-iO-20- 3 

Here we have used the orthogonality of the vp(x) [see GT (3.7)] and the 
fact that 

v0-~(x) v0-2(x).-, v0-~(x) = v~, o ~2 . . . . . .  ~(x) (4.10) 

where cr~ oct 2 . . . . .  ak denotes the set of those elements of al ..... ak that 
occur an odd number of times in the list ~rt ..... a~. One now inserts the 
identity flA~ = [1 + (fla t - 1)] A~/A 1 and the power series expansion (4.5) 
of b(f, a) into (4.9) and collects the lowest order terms of (4.8), which are 

F~11(a ) = --al, 
(4.11) 

1 

]Alkt2~t3 

By means of a device called the Newton diagram, (4) one introduces a 
new scaling of the variables t ' = f A 1 - 1  and a in (4.8) as follows. One 
plots every point (i, j )  on a lattice of nonnegative integers for which F~u in 
the expansion (4.8) does not vanish. From (4.11), two of these points are 
(3, 0) and (1, 1). Moreover, it follows from (4.5) and (4.9) that all other 
such points, as seen from the origin (0, 0), lie beyond the line through the 
points (3, 0) and (1, 1); the equation describing this line is 

l i + m j = r  with l = l , m = 2 ,  r = 3  (4.12) 

This corresponds precisely to Fig. 4.1 of Sattinger. (4) The expansion (4.8) 
may therefore be rewritten 

F , ( f ,  a ) =  ~ ~ F , / j (a) ( fA1-  1) j (4.13) 
k = 0  l i+rnj=r+k 
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with l, m, and r given by (4.12). We now rescale the variables a and t by 
introducing a parameter e, which is supposed to become small, and setting 

so that 

a = d ~ ,  t = f l A  1 - 1 = ~m"c (4.14) 

Flt(sm~,s,;)~__ ~ gr+k ~, F.o.(;)( 
k = O  li+mj=r+k 

= e rR . ( ; ,  z ) +  er+ lg . ( ; ,  r, e) (4.15) 

The reduced  bi furcat ion equat ions  are then obtained from (4.7) and (4.15) 
by dividing by gr, taking the limit e ~ 0, and using (4.11), 

1 /  
Ru(~,z)=  - ( S + ~ 3 +  3(.  

An immediate consequence of Eq. (4.16) is 

2 2 

2) ,, = 0  (4.16) 
. ' ~ .  

(4.17) 

for every nonzero ( , ,  so that the nonzero (2 are all equal. If one denotes by 
n the number of nonzero ~, in a solution of (4.17), then one finds 

~2 = z / (n  - 2/3) (4.18) # 

In view of (4.14) and (4.18) we can put r equal to one, since, up to the sign, 
may be absorbed into the parameter e. Obviously, the indices and the 

signs of the nonzero components of ~ are at our disposal. Given n, the free 
choice of the indices reflects the invariance of the fixed-point equations 
with respect to relabeling the components of x e cgq. The free choice of the 
signs is a manifestation of the covariance property presented in Section 2.1. 

For  small but nonzero ~, Eq. (4.18) provides a solution of (4.7) to the 
lowest order in ~. Using (4.14), we can express this solution in terms of the 
original variables a ,  and t as 

a~ = d (~  = trim(. 

__ ( t ) 1/2 
- \n - - - ~ J  (4.19) 

Here we have used our freedom of choosing positive signs in (4.19). 
Furthermore, we can assume without loss of generality that / ~ =  
{I ..... n}, with n ~< q. We note that the solution (4.19) is invariant under all 
permutations of the elements of Jff in that a ,  does not depend on kt. 
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One easily verifies that the Ansatz (4.1)-(4.2) is consistent with the 
fixed-point equation (4.3). Conversely, starting with (4.19), one can expand 
the b~(fi, a) in (4.9) in an ascending power series with respect to a and 
(flA1-1), use the ideas (4) associated with (4.14), and compare the terms 
order by order so as to show that in any order the permutation symmetry 
is not broken. Some details are given in the Appendix. This then proves 
(4.1)-(4.2). 

Once we know that only symmetric states can bifurcate from m-= 0 at 
T =  To, the next question is which of these states is stable or at least 
metastable. We will show that just below Tc the retrieval states are the only 
states that are stable. All the other symmetric states are unstable. For the 
proof we will exploit the information contained in the reduced bifurcation 
equation (4.16) and the fact (Ref. 4, Section 4.3, particularly Theorem 4.3) 
that the stability of a bifurcating solution is determined by the Jacobian of 
R(~, ~). To understand the ensuing arguments, we must make a small 
detour, however. 

According to (2.22), a phase corresponding to a solution m(x) of the 
fixed-point equation (2.1) is stable if the matrix 

oq ~ = ~ 2  - q Q  - diag { [ 1 - m2(x) ] --1 } (4.20) 

has negative eigenvalues only. Here diag[d(x)] is the diagonal matrix with 
elements d(x), the x labeling the 2 q corners of the hypereube [ -  1, 1 ]q. We 
now want to relate 5: to the fixed-point equation. To this end, we rewrite 
(2.1), 

G(fl, re(x))= m ( x ) - t a n h  [f12 -q ~ Q(x; y )m(y ) ]  = 0  
Y 

(4.21) 

and show ~12) that 5: is negative-definite if and only if DG(fl, m(x)), the 
derivative of G at (fl, m(x)), has positive eigenvalues only. Plainly, both 5: 
and DG are 2qx 2 q matrices and 

DG(fl, m(x)) = ] - diag[ 1 - mZ(x)] fl2-qQ (4.22) 

Let Y be a diagonal matrix with nonzero elements and let X be 
an arbitrary, real, symmetric matrix. Then the congruent matrices ~13) X 
and YXY have the same number of positive eigenvalues and the same 
number of negative eigenvalues. For X we choose DG(fl, m(x)), put 
Y = d i a g { [ 1 - m 2 ( x ) ] - m } ,  and note that YXY and y2X have the same 
eigenvalues. Hence DG and diag{ [1 - m 2 ( x ) ] - 1  }DG = - 5 :  have the same 
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number of positive eigenvalues and the same number of negative eigen- 
values. Q.E.D. 

How to exploit the above observation, which leads from 5 ~ to 
DG(fl, m(x))? In the mathematical literature on bifurcation--and that is 
after all what we are interested in here--one frequently encounters (4'11'14) 
the notion of stability, which means the following. One wants to determine 
the asymptotic behavior of the solutions of a system of ordinary differential 
equations,/~ + G(2, x) = 0, where x is a vector in ~P, say, 2 is a bifurcation 
parameter, and G maps ~ x ~ p into R P. An "equilibrium point" x satisfies 
G(2, x ) =  0. It is stable if DG(2, x) has positive eigenvalues only and it is 
unstable if DG(2, x) has at least one negative eigenvalue (principle of 
linearized stability). In the present context, p = 2 q, x has to be replaced by 
m(x), Eq. (4.21) tells us that G(2, 0 ) =  0 whatever 2 = /~A1-  1, and we want 
to determine the stability of a solution that bifurcates from m -- 0. We have 
seen that this kind of stability coincides with the thermodynamic stability 
of the phase associated with m(x). Now it is shown in Sattinger (Ref. 4, 
Section 4.3) that the stability of a bifurcating solution is determined by the 
eigenvalues of the Jacobian of the reduced bifurcation equation (4.16), i.e., 
the Jacobian of R(t), the dependence upon �9 being suppressed. This 
remarkable result greatly simplifies the stability analysis, since the dimen- 
sionality of (4.16) is at most q, whereas (2.1) refers to 2 q equations. 

According to the above discussion, thermodynamic stability is lost as 
soon as one of the eigenvalues of DR( t )  is negative. By virtue of (4.17) we 
know that z~2 = ~2 _ 1 and a simple calculation then shows 3 p 

(DR).~ 2 2. = = ~ , , ,  (DR)~v 2~ ,~  = 2 ~ ,  ~ r v (4.23) 

where, by (4.18), ~ 2 = ( n - Z ) - I  does not depend on /~. We may rewrite ,u 3 

(4.23) 

DR(~) = ~212- 1 - 4. ~ ] (4.24) 

where ~ is the unit matrix and 1 has all matrix elements equal to one. 
Given n, the latter has (n - 1) eigenvalues zero and a simple eigenvalue n. If 
n = 1, DR(~) has a single, positive eigenvalue and the bifurcating solution is 
stable. This confirms the result of the previous section that the retrieval 
states are stable. However, for n >  1 the bifurcating solutions are all 
unstable, at least near To, since DR( t )  has n -  1 negative eigenvalues 
__4~23 ~= - 4 / ( 3 n - 2 ) .  As will be shown in the next section, this result does 
not preclude that some of the symmetric states may become (meta)stable at 
a lower temperature. 

The method we have presented in this section also works for clipped 
synapses with q =  4k + 1. Then the largest eigenvalue 2m,x is (q + 1)-fold 
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degenerate and one has to take care of an extra product state; cf. (3.13). 
The method works equally well for all bifurcations at temperatures rip = 
2-q)~ o < To, with IP] r 1. Since we are mainly interested in the retrieval 
states, we will not touch upon this type of problem, however. 

5. CL IPPED S Y N A P S E S :  
S T A B I L I T Y  A N A L Y S I S  OF S Y M M E T R I C  S T A T E S  

As they appear, n-symmetric states with n > 1 are unstable. One may 
wonder, though, whether they ever become stable, and, if so, at what tem- 
perature. Taking advantage of the general properties of nonlinear neural 
networks derived in Sections 2~4, we now focus our attention on the 
special case of the synaptic function ~b(x)=sgn(x). The corresponding 
neural network is known in the literature as a model of "clipped synapses," 
where the synaptic strengths are only allowed to take the values _+ 1 and 0, 
so that this model is fully digitized and thus may be implemented more 
easily in a silicon version. It will be shown that, as q becomes large, the 
bifurcation and stability structure of the symmetric states reduces to that of 
the (linear) Hopfield model with the same number of patterns. Since the 
general proof is rather laborious, we will concentrate on 2 ~< n ~< 5. At the 
end of this section a general argument is provided that n-symmetric states 
with n even are always unstable, whenever ~b is odd. 

We investigate the stability of symmetric solutions to the fixed-point 
equation (2.1), i.e., symmetrically built mixture states of the form 

m,(x) = ~ alplvp(x ) (5.1) 
p=_(1 ...... } 

with n<~q. Here we have restricted ourselves, without any loss of 
generality, to solutions in which only the first n components of x are 
involved. 

Inserting (5.1) into the fixed-point equation (2.1) and projecting onto 
the pth eigenvector vp(x), one gets 

a ,p l=2-q~vp(x ) tanhI~A~a l~ lv~(x ) l  (5.2) 
X 

where A~ is defined by (2.24), i.e., A= = 2-q2=. Throughout what follows, it 
is to be noted that by the general results of Section 3.2 the A~ or, in the 
usual notation, Ap only depend on the size ]pl of the set p. Below we 
therefore write A i with i =  ]p[. By virtue of the general theorem in Sec- 
tion 2.4 the stability matrix 5" is block-diagonal with blocks of size 2"-  l, 
so that we are faced with the problem of singling out the largest eigenvalue 
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from 2 q-n+l  blocks, each of dimension 2 n 1, and to determine its change 
of sign (if any) as the temperature decreases. As soon as the largest eigen- 
value of 6e is negative, the symmetric state corresponding to {ap} is 
metastable. 

To illustrate what symmetric solutions look like, we start by giving 
two simple examples: 

m2(x) = at(x1 + x2) + a 2 x l x 2  

m 3 ( x )  = a l ( X l  q- x2 + x 3) q- a2 XilXi2 -]- a 3 x l x 2 x  3 
1 ~<il <i2~<3 

(5.3) 

(5.4) 

The corresponding fixed-point equations for the amplitudes are, for n = 2, 

al=�89 a 2 = 0  (5.5) 

and for n = 3, 

3al + a 3 = tanh[fl(3alA1 + a3A3)] 

al - a3  = tanh[fl(al A 1 - a 3 A 3 )  ] (5 .6 )  

a 2 = 0  

The vanishing of the amplitudes a2 in both cases is not surprising. Quite 
generally, it was shown in Section 2.2 that alp I = 0 for Ipl even. 

Sections 5.1-5.3 are devoted to a stability analysis of n-symmetric 
solutions with 2~<n~5.  In Section 5.4 it is shown that n-symmetric 
solutions with n even are always unstable, whenever the synaptic function ~b 
is odd. 

5.1.  T w o - S y m m e t r i c  S t a t e s  

By the theorem of Section 2.4, the stability matrix is block-diagonal 
with blocks of dimension 2, so that its eigenvalues #p are solutions of 
quadratic equations. We only quote the results: 

#1,2 = ~{flA~j + & +  N ) -  (c + 1) 

___ [fl2(A M - A 2 +  M)2 + ( c -  1)2] 1/2 } (5.7a) 

#3 = flAl+ i~l- 1, #4 = flAl+ j~j-c  (5.7b) 

Here z _~ {3, 4,..., q} and c =  1/(1 - 4a~). Stability is ruined by the existence 
of the third eigenvalue #3, which for the choice ~ = ~Z~ is positive for all 
temperatures T~< TI = To; cf. (2.15). Hence, the 2-symmetric solution is 
always unstable. But it should be noted that secondary bifurcations are 
possible if one of the remaining eigenvalues vanishes. This follows from 
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Section 2.3 and the stability analysis of Section 4. The highest temperature 
where such a bifurcation can occur is defined by/~1([~1 = 1 )=  0, leading to 
a temperature T*(q) that approaches the Hopfield value (1~ T 2 = 0.574419... 
in the limit q ~ o% as is illustrated in Fig. 1. To obtain this number, we 
have rescaled the temperature so as to get Tc = 1. 

5.2. Three-Symmetric States 

For the 3-symmetric solutions of (5.2) the block-diagonal stability 
matrix consists of 8 x 8 matrices of the form 

BI~ I = 

AI~I + Po P2 Pz P2 
P2 AI~L+2+Po P2 P2 0 
P2 P2 A I~L + 2 + Po P2 
P2 P2 P2 Al~b+2+Po 

I Alzl+l + P 0 P2 P2 P2 
I P2 AI~I+I +Po P2 P2 
I 

0 I P2 P2 A i~l + 1 + Po P2 
[ P2 P2 P~ Bill+ 3 "t- No 

(5.8) 
Here v runs through all subsets of {4, 5,..., q} and the quantities Po and P2 
denote the following two types of sum over all vectors x: 

1 
Po = - 2  q 2  1 - - m 3 ( x )  2 (5.9a) 

X 

P2 = - - 2 - q  x~ xixj 1 - m3(x) z' 1 <<.i<j<~3 (5.9b) 

with m3(x) being defined by Eq. (5.4). The Izlth block Bl~ I occurs 

q - -3  

times, so that the Bi,l's constitute the full matrix of second derivatives 
(6e ,), which is 2q-dimensional. 

The eigenvalues of the matrices B M are easily calculated if one uses the 
fact that the determinant of the matrix (15~ 

M =  22 
23 

(5.1o) 
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Fig. 1. 1]ifurcation temperatures for n-symmetric states in a network of clipped synapses, 
with 2 ~< n ~< 5, as a function of the number q of embedded patterns. Through secondary bifur- 
cations, the 3- and 5-symmetric states acquire metastability below T~*(q) and T~'(ql, marked 
by open squares and open triangles, respectively. The temperatures T2*(q) and T*(q), marked 
by full and open circles, denote the highest temperature where secondary bifurcations from the 
2- and 4-symmetric states occur. These states, however, remain unstable as T is lowered 
through T~(q) and T*(q), respectively. 

is simply given by 

where 

det M = f ( / ~ ) -  ttf'(tL) (5.11) 

4 

f(~t) = 1-[ (2k - / ~ )  (5.12) 
k ~ l  

Some simple algebra, facilitated by the use of  (5.11 ), and a s traightforward 
but tedious procedure  of  count ing then leads to the following three groups 
of  eigenvalues (which are labeled in an obvious way). 

(a) 

#( + ) --- Po + (1 + 2)P2 (5.13a) 

with multiplicity (2 - - S ) 2  q - 3 ,  S = ___ 1. 
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(b) 

with multiplicity 

(c) 

~ ( i )  = f lA  i + Po - P2, 

q - 2  2(il) 

i =  1, 3,._, q - 2  (5.13b) 

#(i; s 1, s2) = P0 + P2 + {/(A i + A i + 2)/2 

+ s, [4P~ + Sz[3Pz(A ~ - Ai+ 2) +/~2(Ai-  Ai+ 2)2/4 ] 1/2 

i =  1, 3,..., q -  3 + s 2 (5.13c) 

where Sl, s2 = _+ 1 and the (s2-dependent) multiplicity is 

q - 3  

( i - ( s 2 + 1 ) / 2 )  

Substitution of the 3-symmetric solution (5.4) into (5.9) yields for the 
linear combinations of P0 and P2 appearing in Eq. (5.13) the following 
expressions: 

Po + P2 = -�89 c~ + cosh2B) ~< 0 

P0 - P2 = - c ~  ~< 0 (5.14) 

Po+  3P2= -cosh2A ~<0 

where A and B stand for 

A = 3 ~ A l a  I + flA3a3, B =  f lAxal  - [3A3a3 (5.15) 

From (5.14) it follows at once that # ( + )  is less than zero for all tem- 
peratures and all q, so that the dangerous eigenvalues of the stability 
matrix are those in the groups (b) and (c). Furthermore, since P 1 -  P2 ~< 0 
and Ai < 0 for i =  3, 7 ..... 4k-1, . . . ,  we have #(1)~> #(i) for all i. As will be 
shown in the discussion below, /z(1) is even larger than any eigenvalue of 
group (c), so that #(1) is the most dangerous eigenvalue. It therefore 
governs the stability of a 3-symmetric solution. 

The proof can be decomposed into a finite number of easy steps. First 
we show that P2 ~< 0 for all temperatures T~< T~ = To. This is easily seen if 
one uses (5.14) to establish 

P2 = - 1( cosh2A - cosh2B) (5.16) 
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where A and B are defined by (5.15). Since A3 < 0 and the amplitudes a~ 
and a3 are given by al = - a 3  = 1 at zero temperature, which can be proved 
with the help of Eq. (5.6), we have A >~ B at least at T =  0. But this last 
inequality even holds for all nonzero temperatures T <  T~, since a 3 = 0  
would imply al = 0, which contradicts the fact that the zero solution has 
been found to be unstable for T <  T~. Then, combining (5.16) and the fact 
that A >~ B for all T~< T~, we finally obtain P2 ~< 0, as advertised. 

Now the two cases (i) A i - A i + 2 < 0  and (ii) Ai-Ai+2>/O must be 
studied separately. Let us begin with case (i), where the signs of 
( A i - A i + 2 )  and P2 lead to the obvious inequality #(i; + + )~>#(i; + -  )>~ 
#(i; - s2)  (s2 = ___ 1), so that the eigenvalues of group (c), which will enter 
the competition with the only candidate of group (b), namely #(1), are the 
eigenvalues #(i; + + ) with i odd. Calculating the difference 

# ( 1 )  - #( i ;  + + ) = f l ( A ~  - �89 - [ � 8 9  A i + 2 )  + 2P23 

- { [�89 A~+ 2) + 2P2] 2 - Pz~(A~-  A~+2)} 1/2 

(5.17) 

we find that the right-hand side of this equation is positive, so that 
#(1)~>#(i; + + ) .  Case(ii), Ai-A~+2>~O, is easier to handle due to the 
obvious relation 

g(i) ~> #(i; + - )  >/#(i; + + )  ~>#(i; -sz) ,  s2= ___1 (5.18) 

from which we can deduce immediately that #(1) is the largest eigenvalue, 
since #(1)>~#(i) for all i. 

Having singled out the largest eigenvalue of the stability matrix, we 
find that stability of the symmetric combination m3(x) is guaranteed if 
#(1 ) < 0. The condition for the onset of stability then is 

/~AI{ 1 - t anhZ[ - / / (A la t -  A3a3)] } = 1 (5.19) 

which has to be solved together with the transcendental equations (5.6) for 
the amplitudes al and a3. The numerical solution of these equations yields 
T*(q); see Fig. 1. Note that T*(q) approaches T~ ~ = 0.4598 as q ~ oo. 
This is not surprising, since in the limit of large q the condition (5.19) 
reduces to 

fl-1 = 1 - tanh2(flA l al ) 

which is just the result of Amit et aL (1~ for the Hopfield case, except for a 
trivial rescaling of the temperature so as to put T c = 1. 



284 van Hemrnen, Grensing, Huber, and Kiihn 

5.3. Four- and F ive-Symmetr ic  Solut ions 

The analysis for the 4-, 5- (and higher) symmetric solutions proceeds 
similarly. Exploiting the block-diagonal nature of the stability matrix 
established in Section 2.4, we find the following. 

The 4-symmetric solution is always unstable, since 6e has a positive 
eigenvalue in its odd I~1, I~1 = 0  block [cf. Eqs. (2.28), (2.29)-I for all 
T<<. Tc. Secondary bifurcations are possible where the 4-symmetric solution 
changes its relative stability (though it remains unstable). The highest tem- 
perature where this occurs is related to an eigenvalue in an even [~1, I~1 = 1 
block of 6 e changing sign from negative to positive as T is lowered through 
T*(q), which approaches T4 H~ = 0.4602 (1~ as q -~ oo. This is illustrated 
in Fig. 1. 

The 5-symmetric solution is unstable just below Tc. It acquires 
stability at T*(q), where the largest eigenvalue (in an even Is[, [rl = 1 
block) of 5 ~ becomes negative. Again, as is illustrated in Fig. 1, T*(q) 
approaches T5 H~ =0.3847 (1~ as q ~ oo. In both cases the temperature 
has been rescaled so as to get T~ = 1. 

5.4. Instabi l i ty  of Symmetr ic  States Which Are Even 

In Sections 5.2 and 5.3 the 2- and 4-symmetric states were shown to be 
unstable at any temperature, a result stronger than that of Section 4, where 
we studied the stability just below Tc. Here we show that, whenever ~ is 
odd, all n-symmetric solutions with n even are unstable at low temperatures 
(and thus, in view of the result of Section 4, presumably throughout the 
whole temperature regime 0~< T~< To). To this end, we return to the 
stability matrix 6e in its original form (2.22), 

5gx,y = ~2 q~(x .y) - -6x ,y[1--m2(x)]  -1 (5.20) 

which, for metastable solutions m(x), is required to be negative-definite. 
We focus our attention on the diagonal elements (x = y): 

f12 q~)(q) - [1 - m 2 ( x ) ] - 1  (5.21) 

and ask whether there exists an x with re(x)= 0 for all T, that is, we look 
for sublattices I(x) = {i: {i = x} that do not order at any temperature. Once 
we have established the existence of an x with re(x)= 0 for all T, we find 
that the corresponding diagonal element in the stability matrix is positive 
for all fl obeying the inequality 

fl~(q) > 2 q (5.22) 
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This contradicts the stability requirement that J be negative-definite, and 
hence 5Qx,x < 0. 

To show that such an x exists, it is sufficient to prove that the system 
of equations 

Z 1~ xv =0 ,  k =  1, 3 , . . . , n -  1 (5.23) 
p ~ { l, . . . ,n } v ~ p  

tpl =k 

has a solution in cgq = { _ 1, 1 }q since, irrespective of the values of the sym- 
metric amplitudes ap = alp t = a k, k = 1, 3, . ,  n - 1, the magnetization 

m(x) = Z ak ~ H xv (5.24) 
k = 1,3, . . . ,n--  1 p _~ { 1,...,n } v ~ p  

tpP =k 

vanishes on all sublattices I(x) for which the vector x~CYq satisfies 
Eqs. (5.23). For  k =  1, we infer that the number of xi with xi = + 1 must 
equal the number of x j  with xj = - 1 (which can be accomplished only if n 
is even). Moreover, we note that a permutation of the first n components of 
x leaves Eq. (5.23) unaltered. Both facts can be exploited to perform a 
permutation P with xe (  o = - x~ for all i, 1 ~< i ~< n, with the effect that the 
left-hand side of (5.23) changes its sign for k = 3, 5,..., n - 1. This completes 
our proof that every even-symmetric solution m(x) is identically zero on all 
sublattices I(x) with x~ + -.. +x~ =0.  According to (5.22) and (5.23), it is 
therefore unstable at low temperatures. 

6. F O R G E T F U L  M E M O R I E S  

In this section we briefly consider neural network models that, unlike 
the Hopfield model, are capable of ever acquiring new information, albeit 
at the expense of gradually forgetting previously stored data. These models 
are usually characterized by learning rules that involve an iterative 
definition of the synaptic couplings Ju; see GT (1.9) and Refs. 6, 7, and 
16-19. To be specific, if one denotes by J~(~) the value of the coupling 
between neurons i and j after a patterns have been embedded in the 
system, then one has 

with 

J a ( a ) = N - I ( ~ ( # ~ , ~ ] ~ + N J o . ( ~ - I ) ) ,  l < ~ < ~ q  (6.1) 

]u (0 )  = 0 

for some suitably defined function ~b: ~ -~ ~. This prescription includes, e.g., 
the nonlinear learning within bounds algorithms of Hopfield, (6'16) Toulouse 
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etaL, (~7) Nadal etal.,  (18) and Parisi, (~9) and also the linear palimpsestic 
schemes studied by Mezard et al. (7) 

In this section we are not, however, going to investigate the extensive 
spin-glass limit where q, i.e., the number of stored patterns, becomes of the 
order of the system size N, but rather study the essentially finite-q behavior 
(q<~logN) of models described by (6.1), to which the general theory 
developed in GT applied. It turns out that some of the salient features of 
forgetfulness are already present in the finite-q limit and that the 
mechanisms of forgetfulness can be explicitly identified. 

Putting Jij=Jo.(q), with Jij(q) given by (6.1), the J~ so defined are of 
the general form 

Ju = N-1Q(~ i ;  ~j) (6.2) 

with synaptic kernel Q satisfying the invariance property GT (3.1). The 
spectral theory of Section 3 of GT therefore applies to the synaptic kernels 
Q associated with forgetful memories described by (6.1), no matter what ~b, 
and, interestingly, mechanisms of forgetfulness can be discovered in the 
spectrum of Q. The reason for this is related to a probabilistic inter- 
pretation of the eigenvalues 2p, p ~_ { 1,..., q}, of Q as embedding strengths of 
the stored patterns (or of products of stored patterns, as the case may be). 

To understand this, consider Vp(X), x ~  q, i.e., an eigenvector of Q 
corresponding to the eigenvalue 2p of Q. The product pattern 

/ )P(~i)= 1~ ~ia (6.3) 
~Ep 

is associated with Vp(X), and its embedding strength may be defined as 

e p = N -  ' ~ v p(~,) V p(~y)J u (6.4) 
i,j 

The quantity ep is an overlap between the pattern associated with vp and 
the couplings Ju of the network and it may be interpreted as a measure of 
the trace left by the pattern vp in the network. Using (6.2), one can com- 
pute the embedding strength ep to give 

ep = W 2 ~ Vp(~i) l)p(~j) Q(~i; ~j) 
i,j 

x,y bicl(x) jEl(y) J 

= 2-2q Z Vp(X) vp(y) Q(x; y) 
x,y 

= 2-q2p (6.5) 
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Here I(x) and I(y) have already been defined in (3.7). We have used the 
fact that the index set { 1,..., N} may be written as a disjoint union of the 
I(x), xeCgq; see GT (2.11) and (2.12). Therefore, ep is proportional to the 
eigenvalue 2p of Q. Note that - l e  o equals the ground-state energy of the 
pure state (6.3) associated with vp. 

Given the above interpretation of the eigenvalues 2 0 as embedding 
strengths, there are two possible mechanisms of forgetfulness. 

First, the embedding stengths of the stored patterns decay so rapidly 
as a function of storage ancestry that except for the very last ones they 
disappear in the noise created by thermal motion or by themselves. (2~ 

Second, the embedding strengths of the retrieval states decay faster 
than those of certain product states and are therefore swamped by them. 

Both scenarios may be observed in the finite-q limit for appropriate 
choices of the function ~b and the weights ~t~ in (6.1). Ultimately, however, a 
pattern will only be forgotten if its embedding strength becomes smaller 
than some level of (thermal or static) noise in the system. In the finite-q 
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limit this can of course only be thermal noise, since finitely many patterns 
do not generate any static synaptic noise. Infinitely many, however, do. (2~ 

To illustrate our general ideas, we have studied the spectrum of the 
synaptic kernel Q associated with (6.1) for the following two choices of the 
function r 

(i) ~b(x)=tanh(x) 

~'sgn(x), Ixl > 1 
(ii) r = ix ,  Ixl ~< 1 (6.6) 

and the weights 

/z~ = e/x/q, 1 ~<~<q (6.7) 

in (6.1). 
Both models have in common that in the limit e ~ oo they will only 

memorize the most recently stored pattern and that, taking e-1r  instead 
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of ~b, in the limit z-~ 0 they reduce to the nonforgetting linear Hopfield 
model. Intermediate cases of forgetfulness occur between these limits. Our 
results are summarized in Figs. 2-5. In obtaining them, no approximation 
was made. Further details about forgetful memories, including the case of 
extensively many stored patterns, will be reported elsewhere. r 

7. D I S C U S S I O N  

In the present paper and the previous one <~) we have presented a com- 
plete analysis of neural network models with finitely many patterns. The 
general theory (GT, Section 2) allows an arbitrary synaptic kernel Q and 
hence arbitrary nonlinearity. Furthermore, the distribution of the ~i~ was 
taken to be arbitrary as well. Under a weak invariance condition [GT 
(3.1)] a complete spectral theory has been derived for the case where the 
~i~ assume the values _+ 1 with equal probability. The Gaussian distribution 
has been considered in detail also. Combined with the results of Sec- 
tions 4-6 of the present paper this allows a deeper understanding of the 
way in which the solution for extensively many patterns (2~ joins onto the 
one for a finite but large number of patterns. 

A large subclass of neural network models is provided by the inner 
product models where 

Q(x; y) = ~b(x. y) (7.1) 

for some synaptic function ~b. For this type of model the states associated 
with the q stored patterns bifurcate first, at To= 2-q21, where 21 is the 
largest eigenvalue of the synaptic kernel Q. The retrieval quality %, with 
Jp] = 1, is determined by 

% = tanh[(Tc/T) %] (7.2) 

which is Eq. (3.1). The lower the temperature, the closer % is to one, and 
the better the retrieval. For instance, if To~T= 5, then % ~ 1 -  10 -4 and 
since the error percentage is determined by �89 %), we find that only one 
out of every 20,000 spins has the wrong sign. At present the largest 
simulation samples contain 4000 spins and the above accuracy more than 
suffices. 

The nonlinearity becomes noticeable if T < 7"q = 2-q~[, where ~ is the 
second largest eigenvalue of Q. For the Hopfield model, which is linear, ~[ 
vanishes, but for all other known models ~ > 0. Below Tq we enter the tem- 
perature regime where abundantly many (typically 2 q 2) pure product 
states appear, which all acquire metastability as T-~0. They are a con- 
sequence of the nonlinearity, but are usually unwanted. So the important 
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question is: Can we choose the temperature T so low that the retrieval 
quality of the stored patterns is acceptable while at the same time T still 
exceeds Tq? Indeed we can. The point is that Tq/T~ ~ q ~ effectively turns 
out to be an upper bound, which is easily reduced to 1/5, say. 

The symmetric states bifurcate at T~, are fortunately unstable as they 
appear, but cannot be dispensed with. In fact, they exist for linear and non- 
linear inner product models alike. 

In summary, for a given temperature T >  0 the benefits of a nonlinear 
model can be kept, while the disadvantages as compared to the Hopfield 
model are gradually eliminated as q ~ ~ .  

APPENDIX  

In this Appendix we establish that, if to lowest order in t the solution 
of (4.7) is given by (4.19), then the full solution a of (4.3) is symmetric in 
the sense that, as t ~ 0+, 

= ~ O~IpI ~ tlpl/2' P ~ ~/" (A.1) 
~P ~0, p ~ JV'C=p c~ ({1 ..... q}\JI/') # ~ 

where Y is the subset of {1 ..... q} defined by X = {#: a ~ # 0  in (4.7)}. 
To this end, we expand the right-hand side of (4.3), writing, as before, 

~p=a u if p =  {~}, and ~p=bp if [p[ ~>3. We then obtain [cf. (4.5)] 

o = G:  = ~.(1  - ~Ap)  + (3A1)~ 3 ~ af,~au2a.36p,.jo.zo.3 
/-t 1/x2#3 

+ ~ (/~A,)~ 
~ ama~2Aabo6p,.lOmOO 

~t l/Z2o" 

+ ~2/~A~ 
~ a~,lA~lb,~A~2b,~26p.~1o~1o,.2 

/~10-10"2 

+-~ Z A0-1b~,A,2b~2Ao3b~3 6o.,,o~2o~3 + '"  (A.2) 
O'10-20- 3 

We first consider the equations G~ = 0 with ~r n ~A/~ r ~ .  Denote the 
corresponding ~ by c~. Because of the Kronecker 6's in (A.2) and the 
definition of the o product in (4.10), every term in G~ other than the linear 
term c,(1 -/~Ao) must also contain amplitudes of "c type," so that G~ is of 
the form 

G,~=c,.(1-flA,.)+ ~ c,.,g,~,({a~,}, {bo}, {c,~}) (A.3) 
0-' 
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Since the sum over a'  in (A.3) exclusively collects nonlinear terms of G~, 
each go, must contain at least two other amplitudes of a, b, or c type. Since 
we know beforehand that the b o and c~ are at least of order t [-cf. (4.5) and 
Ref. 4, Lemma 4.1], we conclude from (A.3) that a//c~ are at least of order 
t 2. Repeating this argument indefinitely, we conclude that the c~ are zero to 
all orders of t ~, n e N, as t --* 0 +, and hence can be ignored in what follows. 

We now consider the bp with p ~ Y .  We show that, as t ~ 0 +, 

b o = btp i "~ l Ipj/2 (A.4) 

We recall that A~ = At~ t and that to lowest order in t the a .  are, according 
to (4.19), symmetric and of order tm.  Further, using/~Ao = (1 + t) At~t/A1, 
we find that, as t - , 0  +, the amplitudes b(~,,~,~}, v ~ s Y  ( i=1 ,2 ,  3), are 
determined by 

0 = b{~l,~2,v3}(1 - A3/A1)  + 2avlav2a~3 (A.5) 

from (A.2). Given the symmetry of the a , ,  we conclude that to lowest order 
in t, 

bp=bLpt,,~t toll2 for Ip[=3 (A.6) 

Suppose now that we had established (A.4) for all b o such that 
Ipl ~ [p01 - 2. Then to lowest order in t the equation for bp0 reads 

0=bp0(1-Atp0t/A1)+ ~ gp0({a,},{bp}) (A.7) 
{ . } , { p }  

Here gp0 is a product of a .  and bp with #~ {#} and p c  {p} such that the o 

product gives Po, 

l-I ~  1~ ~  (A.S) 
~{~} pc{p} 

Since all a~ and b o carry t factors, the sum in (A.7) includes only terms 
where {#}, {p } constitutes a disjoint decomposition of Po in the series (A.2). 
These, however, involve only those amplitudes whose symmetry to lowest 
order in t is already established by assumption. Since the number of dis- 
joint decompositions of Po with a given number of 1-, 3-, 5-, .... ([P0[ - 2)- 
element sets depends only on the size of Po, the symmetry of bpo and 

boo = b lp01  ~ t Ip~ (A.9) 

follow. This then completes the proof of (A.1). 
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